Clinical Data NBTXR3

Abstracts in this section cover results of clinical trials with NBTXR3.

2017 – Abstract SITC Conference Maryland – Clinical

Soft tissue sarcoma (STS) is a large and heterogeneous group of malignant mesenchymal neoplasms characterized by a strong tendency toward local recurrence and metastatic spreading. Consistently, the immune microenvironment in sarcomas is highly variable. A new class of material with high electron density, hafnium oxide, was designed at the nanoscale to efficiently absorb ionizing radiation […]

Continue Reading...

2017 – A phase 1 trial of NBTXR3 nanoparticles activated by IMRT in the treatment of advanced-stage head and neck carcinoma

Functionalized hafnium oxide nanoparticles (NBTXR3) have been developed as selective radioenhancers, which may represent a breakthrough approach for the local treatment of solid tumors. The high electron density of the nanoparticles, when exposed to radiotherapy (RT), allow the absorption/deposition of a high radiation dose within the tumor cells, to physically kill the cells and possibly improve outcome.

Continue Reading...

2017 – Specific adaptive immune pattern induced by NBTXR3 exposed to radiation therapy in soft tissue sarcoma (STS) patients

NBTXR3 are functionalized hafnium oxide nanoparticles, undergoing seven clinical trials for enhancing radiation therapy (RT). The high electron density of the nanoparticles, when exposed to radiotherapy (NBTXR3 + RT), allow absorption/deposition of a high radiation dose within the cancer cells to physically kill the cells, and possibly improve outcome. Besides, NBTXR3 + RT has shown subsequent ability to enhance immunogenic cell death and immune response in preclinics. We hypothesized that NBTXR3 + RT could trigger an enhanced immune response when compared to RT in patients with STS.

Continue Reading...

2014 – ASCO Abstract – Preliminary Data NBTXR3 Soft Tissue Sarcoma – Bonvalot et al.

Functionalized hafnium oxide nanoparticles (NBTXR3) have been developed as selective radioenhancers, which may represent a breakthrough approach for the local treatment of solid tumors. This is a unique approach where crystalline nanomaterials with high electron density when exposed to radiotherapy, can allow penetrate into the cell and make feasible the absorption/deposition of a high energy dose within the tumor cell. A phase I/II trial was implemented in patients with locally advanced STS.

Continue Reading...

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer