Hafnium Oxide

2017 – Abstract – 13th Journées cancéropole GSO – HfO2 nanoparticles in solid tumors

The enclosed abstract was presented at the 13th Journées cancéropole Grand Sud-Ouest at Poitiers. The abstract Hafnium oxide nanoparticles as an emergent promising treatment for solid tumors describes how hafnium oxide nanoparticles were designed at the nanoscale in the form of crystalline 50nm-particles to efficiently absorb ionizing radiation and increase the radiation dose deposited – “hot spots” of energy deposit – from within the tumor cells for efficient cell killing. […]

Continue Reading...

2018 – ESTRO – Hafnium Oxide Nanoparticles and Radiotherapy: A Promising New Treatment Strategy

With recent advances in radiation delivery techniques, an increasing number of cancer patients undergo radiotherapy. However, due to the non-targeted nature of radiotherapy, doses are limited by potential toxicity to surrounding normal tissue. Thus, a major challenge remains to develop new strategies to improve the tumor selectivity of radiation therapy. […]

Continue Reading...

2018 – ASCO GI – A phase I/II trial of NBTXR3 nanoparticles activated by SBRT in the treatment of liver cancers

The physical mode of action of NBTXR3 may represent a breakthrough approach for the local treatment of liver cancers, as it does not engage liver and renal functions, i.e. nanoparticles are not metabolized and not excreted by kidney. A phase I/II trial has been implemented for the treatment of hepatocellular carcinoma and liver metastasis. […]

Continue Reading...

2017 – Abstract – THNO – NBTXR3 in combination with IMRT in patients with locally advanced HNSCC

At the 2017 THNO in Nice, France, prof. C. Le Tourneau presented preliminary results of NBTXR3 in patients suffering from HNSCC. The treatment was associated with a positive safety profile, and preliminary effiacy evaluation, the local Complete Response rate is 83 % (dose level15% and 22%), with a duration of response of 22 months. […]

Continue Reading...

2017 – Abstract SITC Conference Maryland – Clinical

Soft tissue sarcoma (STS) is a large and heterogeneous group of malignant mesenchymal neoplasms characterized by a strong tendency toward local recurrence and metastatic spreading. Consistently, the immune microenvironment in sarcomas is highly variable. A new class of material with high electron density, hafnium oxide, was designed at the nanoscale to efficiently absorb ionizing radiation […]

Continue Reading...

2017 – Abstract Conference Immunotherapy Radiotherapy Combinations NYC

Hafnium oxide, an electron-dense material, was designed at the nanoscale to increase the radiation dose deposited from within the cancer cells: “Hot spot” of energy deposit where the nanoparticles are when exposed to radiation therapy (RT). Preclinical studies have demonstrated increase of cancer cells killing in vitro and marked antitumor efficacy in vivo with presence of these nanoparticles […]

Continue Reading...

2018 – AACR – Activation of the cGAS-STING pathway by NBTXR3

Recent studies reported that radiotherapy could activate the cGAS-STING pathway, which plays a fundamental role in the immune response to cytoplasmic DNA, by activation of the transcriptional factor IRF3, leading to expression of interferon-beta. Moreover, cGAS-STING activation appears to be an important component for tumor resident Antigen-Presenting Cells activation, a crucial step for induction of CD8+ T cell response against tumor derived antigens. […]

Continue Reading...

2017 – Abstract SITC Conference Maryland – Non Clinical

Hafnium oxide, an electron-dense material, was designed at the nanoscale to increase the radiation dose deposited from within the cancer cells: “Hot spot” of energy deposit where the nanoparticles are when exposed to radiation therapy (RT). Preclinical studies have demonstrated increase of cancer cells killing in vitro and marked antitumor efficacy in vivo with presence of these nanoparticles […]

Continue Reading...