Head & Neck

2017 – Abstract – 13th Journées cancéropole GSO – HfO2 nanoparticles in solid tumors

The enclosed abstract was presented at the 13th Journées cancéropole Grand Sud-Ouest at Poitiers. The abstract Hafnium oxide nanoparticles as an emergent promising treatment for solid tumors describes how hafnium oxide nanoparticles were designed at the nanoscale in the form of crystalline 50nm-particles to efficiently absorb ionizing radiation and increase the radiation dose deposited – “hot spots” of energy deposit – from within the tumor cells for efficient cell killing. […]

Continue Reading...

2017 – Abstract – THNO – NBTXR3 in combination with IMRT in patients with locally advanced HNSCC

At the 2017 THNO in Nice, France, prof. C. Le Tourneau presented preliminary results of NBTXR3 in patients suffering from HNSCC. The treatment was associated with a positive safety profile, and preliminary effiacy evaluation, the local Complete Response rate is 83 % (dose level15% and 22%), with a duration of response of 22 months. […]

Continue Reading...

2017 – Abstract – 35th CFS – Hafnium Oxide Nanoparticles: An Emergent Promising Treatment for Solid Tumors

Hafnium oxide nanoparticles: an emergent promising treatment for solid tumors To improve tumor response, radiotherapy (RT) has been combined with chemical agents, radiosensitizers and monoclonal antibodies. However, the complexity of these associations in terms of pharmacology, local control, clinical outcome benefits or patient quality of life underlines the need for the development of new therapeutic approaches. […]

Continue Reading...

2017 – Abstract Conference Immunotherapy Radiotherapy Combinations NYC

Hafnium oxide, an electron-dense material, was designed at the nanoscale to increase the radiation dose deposited from within the cancer cells: “Hot spot” of energy deposit where the nanoparticles are when exposed to radiation therapy (RT). Preclinical studies have demonstrated increase of cancer cells killing in vitro and marked antitumor efficacy in vivo with presence of these nanoparticles […]

Continue Reading...

2017 – Abstract SITC Conference Maryland – Non Clinical

Hafnium oxide, an electron-dense material, was designed at the nanoscale to increase the radiation dose deposited from within the cancer cells: “Hot spot” of energy deposit where the nanoparticles are when exposed to radiation therapy (RT). Preclinical studies have demonstrated increase of cancer cells killing in vitro and marked antitumor efficacy in vivo with presence of these nanoparticles […]

Continue Reading...

2017 – AACR Abstract – NBTXR3 combination with cisplatin in vivo and in vitro

Combination of NBTXR3 and cisplatin has been evaluated in vitro and in vivo. No specific toxicity was observed for the cells exposed only to NBTXR3. For the combined treatment, a marked and enhanced cell destruction when compared to the single agent. In vivo, NBTXR3 combined with low dose of cisplatin delayed tumor growth when compared to single agent CDDP in combination with RT. NBTXR3 is intended to be injected in the tumors. Spilling in the circulation may occur during product administration or, as expected, during tumor destruction, leading to steady trapping of NPs in the reticulo-endothelial system (liver and spleen). Clinically, it is unknown whether patients, previously treated with NPs, may show toxic signs when NPs are exposed (activation) to diagnosis imaging (computed tomography(CT)) of the liver.

Continue Reading...

2017 – AACR Abstract – NBTXR3 anti-tumor efficacy in vivo

NBTXR3 has been evaluated in numerous in vivo models. The antitumor efficacy was systematically enhanced in terms of tumor growth delay for animals treated with NBTXR3 and exposed to radiotherapy when compared to radiotherapy alone. In this abstract the transferability of the treatment with NBTXR3 from one type of cancer to the other is described. NBTXR3 is intended to be injected in the tumors. Spilling in the circulation may occur during product administration or, as expected, during tumor destruction, leading to steady trapping of NPs in the reticulo-endothelial system (liver and spleen). Clinically, it is unknown whether patients, previously treated with NPs, may show toxic signs when NPs are exposed (activation) to diagnosis imaging (computed tomography(CT)) of the liver.

Continue Reading...

2017 – A phase 1 trial of NBTXR3 nanoparticles activated by IMRT in the treatment of advanced-stage head and neck carcinoma

Functionalized hafnium oxide nanoparticles (NBTXR3) have been developed as selective radioenhancers, which may represent a breakthrough approach for the local treatment of solid tumors. The high electron density of the nanoparticles, when exposed to radiotherapy (RT), allow the absorption/deposition of a high radiation dose within the tumor cells, to physically kill the cells and possibly improve outcome.

Continue Reading...

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer