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Radio-enhancers, metal-based nanosized agents, could play a key role in oncology. They may unlock the
potential of radiotherapy by enhancing the radiation dose deposit within tumors when the ionizing
radiation source is ‘on’, while exhibiting chemically inert behavior in cellular and subcellular systems
when the radiation beam is ‘off’. Important decision points support the development of these new type
of therapeutic agents originated from nanotechnology. Here, we discuss from an industry perspective,
the interest of developing radio-enhancer agents to improve tumor control, the relevance of nano-
technology to achieve adequate therapeutic attributes, and present some considerations for their
development in oncology.
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1. Introduction

Oncology is a field of high unmet medical need. Cancer diseases
are the second cause of death in the developed countries and are
rapidly paralleled by developing countries [1]. The global cancer
market was valued in 2010 at $54bn and forecasted to reach up to
$81bn in 2016. Themajor drugs which contributed to the 2010 sales
Pottier).
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were the three blockbusters Roche's Avastin (bevacizumab) at
$6.2bn, Herceptin (trastuzumab) at $5.2bn, and MabThera (ritux-
imab) at $5.1bn [2]. Still, innovation is welcome for improved
treatment in view of the multiple types of cancer. Huge in-
vestments are poured into research and development programs
aiming at establishing effective therapies for long-term disease
management and control. Nowadays, drug discovery should focus
on treatments that offer not only the best risk-benefit ratio but also
includes considerations such as the quality of cancer care, access to
treatments, and differing stakeholders' expectations on therapies.
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When possible, local treatment of cancer is sought. Surgery and
radiation therapy are the mainstays of local treatment either used
alone or in combination. About 60% of cancer patients receive
radiotherapy at some point of their treatment regime. Despites of
its widespread usage, radiation therapy presents a narrow thera-
peutic window. Most of the time, the total radiation dose required
to eradicate tumor cells triggers unacceptable healthy tissues
damage.

Recent developments involving radiotherapy equipment, soft-
wares and the inclusion of image-guided radiation, have certainly
improved the delivery of the radiation dose to the tumor [3e5].
Besides, an approach coming from within the cancer cells could
unlock the potential of radiotherapy. As such, there are two possible
ways to further improve local control with radiotherapy. The first
approach relies on the use of radiation modifiers, such as radio-
sensitizers, which prepare the tumor cells to receive the radio-
therapy, therefore increasing the tumor cell killing when
radiotherapy is applied [6]. The second approach consists in the use
of radio-enhancers which enhance the radiation dose deposit at the
tumor cell level [7].

In this mini reviewwewill discuss from an industry perspective,
(1) the interest of developing a radio-enhancer, among other ap-
proaches, to improve tumor control, (2) show the relevance of
nanotechnology to achieve adequate metal radio-enhancer attri-
butes, and (3) present some considerations for development of
metal-based nanoparticles as radio-enhancers in oncology.

2. Acting from within the cancer cells: radio-enhancers
represent an attractive approach for successful tumor control

Radio-enhancer agents look promising in comparison with ra-
diation modifier agents to locally improve tumor control. Coleman
and Mitchell [8] raised critical considerations for successful com-
bination of radiation modifiers and radiotherapy. To achieve the
expected additive or synergistic effect of the combined treatment,
one has to address a long list of questions such as, what is the ra-
diation modifier target?, is the target stable?, can the target be
reached?, what is the optimum schedule?, can the radiation mod-
ifier be used throughout a course of fractionated radiation ther-
apy?, what is the selectivity of the agent?, what is the design of the
clinical trial? and importantly how to keep the radiotherapy ob-
jectives in terms of local treatment since radiosensitizers, chemo-
therapeutic agents and biologicals, are so far systemic treatments
impacting globally the health status.

In short, radiosensitizers are chemical or biochemical agents
which rely on their specific interactions with cancer cells or tumor
microenvironment. Therefore, any changes triggered by the radio-
therapy itself may impact on the efficacy of the agent. Furthermore,
a large set of preclinical research should be undertaken to imple-
ment a relevant schedule to optimize the combination treatment of
radiotherapy with the radiosensitizer agent. This is an important
phase of development because of the need of an appropriate design
of clinical trials to establish the relevance of the combination. Also,
the mode of action of most of radiation sensitizers is not specific to
the tumor only.

In contrast, the design of radiation enhancer agents provides a
different perspective. The purpose is no more to develop a com-
pound with a chemical mode of action, on a specific target such as
the cell cycle, DNA repair or pathways known in survival after ra-
diation, in order to synergize with radiations. Instead, the aim is to
design a compound which works through the same physical mode
of action of radiotherapy, to enhance the radiation dose deposit.
Ionizing radiations interact with tissues, mainly water molecules,
and deposit energy via secondary electron emission (photoelectric
and/or Compton effect), photon emission and also possibly via
Please cite this article in press as: A. Pottier, et al., Metals as radio-enhance
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characteristic x-ray photon, Auger cascade and subsequent radical
production. Introducing in the X-ray pathway a material with a
high electron density will enhance the probability of interaction
with ionizing radiationwhen compared towater, and will therefore
achieve a higher energy dose deposit. Advancing in this concept,
the previous list of questions intended for radiationmodifier agents
shifts into the following: can we design a radio-enhancer com-
pound to be used throughout the course of fractionated radiation
therapy to enhance the radiation dose deposit when the radiation
beam is “on” and to be chemically inert in the cellular or subcellular
systems when the radiation beam is “off”?

3. Metals as radio-enhancers: the values of nanotechnology

High Z metal elements (where Z is the atomic number and
corresponds to the number of electron surrounding the nucleus)
present the necessary features to interact strongly with ionizing
radiation. Such key properties are not enough to manufacture an
adequate radio-enhancer. Only the use of these high Z metal ele-
ments assembled as a high electron density material can make
feasible the absorption/deposition of a high-energy dose when
exposed to radiotherapy [9]. Beyond the selection of material
composition and structure, well-controlled physicoechemical at-
tributes of the object at the nanoscale, such as its size, shape and
surface, can be independently optimized to determine its
bioavailability and interactions with cells.

3.1. Nanoparticle size

The size is a fundamental parameter for nanoparticles trans-
portation, accumulation and retention at the tumor site. Large
inorganic nanoparticles (typically larger than 10 nm) tend to
preferentially accumulate in the reticuloendothelial system, mainly
liver and spleen. The particles' size limit for renal and lung barriers
are reported around 5.5 nm and 34 nm respectively [10]. Passive
tumor targeting generally relies on the enhanced permeability and
retention (EPR) effect where the cutoff size of tumor transvascular
pore is reported to be 100e200 nm [10,11]. The particle size is also
key for efficient trafficking at the cellular and subcellular level.
Metal-based nanoparticles with size around 50 nm have been re-
ported to maximize cellular uptake [10]. Aggregation of nano-
particles in biological media has also been mentioned as
participating to nanoparticles' cell uptake [12].

3.2. Nanoparticle shape

Remarkable nanoparticles accumulation within tumor vascula-
ture has been shown using thin disc-like porous silicon particles
with well-defined dimensions [13]. Regarding nanoparticles' cell
uptake, spherical shape has been found more promising than rod
shape for a high gold nanoparticles cancer cell uptake [14].

3.3. Nanoparticle surface

The surface of nanoparticles is a determinant parameter gov-
erning their interactions with biological systems. Stealth properties
may be desired to prolong circulation using neutral hydrophilic
polymers; on the contrary negatively or positively charged nano-
particles may be wanted for rapid and strong non-specific in-
teractions with cells' membrane [15].

The optimal design of metal-based radiation enhancer agents
should reconcile ambition and need: a radio-enhancer, at the right
place, for the right time, at the right dose. Nanotechnologies may
allow achieving such goals by separating different functions within
a given object.
rs in oncology: The industry perspective, Biochemical and Biophysical
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4. Metal-based nano-crystals as radio-enhancers: key
requirements for development

Several guidelines have been proposed to ensure successful
development of new tools to fight cancer. However, as part of the
innovation phase and prior to moving into the development pro-
cess, the following go/no go features are to be considered:

� Will this new tool bring solution to unmet medical need?
� How far does this new tool address all possible clinical settings?
� How far is this new tool integrated within the clinical practice?
� Can this new tool be manufactured in a reliable manner and in
quantities to supply the potential market?

Each decision-parameter listed above break down into multiple
bullet-points which converge into a unique “scope of work” as an
entrance point to initiate the product development.
5. Considerations for development of metal-based
nanoparticles as radio-enhancers in oncology

Unlocking the potential of radiotherapy would certainly bring
new hope in cancer treatment. Several approaches have been
explored to enlarge the therapeutic window of radiotherapy
(Fig. 1). Among them, nanosized metal-based radiation enhancers,
acting from within the cancer cell, emerge as an unprecedented
alternative in therapy for local tumor control.

Selection of high Z elements constitute the fundamental for the
design of nanosized radiation enhancers. From this point, selection
of chemistry as opposed to screening the chemistry brings the
added value to the compound.
Fig. 1. Tools to enlarge the therapeutic window of radiotherapy. Macroscopic tools such as eq
improved the delivery of energy into the tumor. Still energy crosses healthy tissues. Molecu
disease, impacting on global patient health. Nanometric tools may bring the same physical m
concept of local intervention to improve tumor control.
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5.1. A tool which may bring solution to unmet medical needs

“On” status: The high electron density of the material consti-
tuting the nanoparticle is a key feature, enabling a strong interac-
tion with X-rays. Monte Carlo calculation is an effective tool to
simulate the passage of ionizing radiations through matter and
quantify radiation dose deposit in tissues. Simulations have shown
the relevance of high Z materials to enhance radiation dose depo-
sition with ionizing radiation sources classically used in the clinic
[16]. Correspondingly, marked enhancement effects have been
demonstrated in in vitro models supporting the development of
these nanosized tools as effective radio-enhancers [17,18].

“Off” status: The integrity and inert behavior of the crystal are
important parameters to consider in the development of nanosized
radiation enhancers. Material with low solubility (no degradation),
absence of redox phenomena or electron transfer (no oxidative
damages) and nomarked surface acido-basicity, will contribute to a
safe design of the nanoparticle and ensure the quality and the
outcome of the interaction with ionizing radiation upon multiple
fractions of radiotherapy. In this regard, metal oxide nanoparticles
offer a large panel of materials with tunable properties that may
appear appealing when compared to stable high Z metal
nanoparticles.
5.2. A tool which addresses a large panel of clinical settings

Metal-based radiation enhancers may be designed and devel-
oped to address all cancers. Here, a single design of nanoparticles
for systemic administration may rely on the EPR effect to passively
target all types of solid tumors.

Alternatively, metal-based radiation enhancersmay be designed
uipments, softwares, as well as the implementation of image-guided radiotherapy have
lar tools such as radiosensitizers are so far administered systemically to address local
ode of action of radiotherapy at the cellular or subcellular level, therefore achieving the
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to meet specific clinical needs for different cancers. In this case,
based on the same material core (composition and structure),
therefore on the same physical mechanism of action, the nano-
particles may be functionalized and prepared for a given mode of
application: local administration (intratumoral or superselective
intra-arterial injection), intravenous, or direct application in the
tumor bed during surgery after excising the tumor. In this context,
the particular product will be selected on the basis of specific pa-
tient needs defined by the type of cancer, the stage of its course, and
the optimum moment for therapy, i.e. preoperative, postoperative
or definitive treatment (Fig. 2).

5.3. A tool which can be integrated in the clinical practice

Acceptance of a new treatment by the different oncology
stakeholders is supported by its capacity to integrate the current
clinical practice, which includes the patient's acceptance. Diffi-
culties to adopt a new approach may typically come from the ne-
cessity to implement new or additional steps to existing practice.

When developing a metal-based nanosized radiation enhancer,
one should typically consider the route of administration, fre-
quency of use during the course of radiotherapy programs, and the
timing between its administration and radiotherapy delivery. All
these parameters may be sensitive for broad product adoption in
the medical practice.

For instance, we have developed functionalized hafnium oxide
nanoparticles intended for a single administration prior the onset
of radiotherapy delivery and to persist in the targeted tumor during
the complete radiotherapy program.

NBTXR3, our lead product has been designed for local use
(intratumor or superselective intra-arterial injection). Proof of
nanoparticles' dispersion, persistence within the tumor mass and
absence of leak within the surrounding healthy tissues has been
demonstrated in the non-clinical program [19]. These findings have
been confirmed in the two ongoing clinical studies, in patients with
soft tissue sarcoma and head and neck squamous cell cancer
[20,21]. Here, 50 nm-sized hafnium oxide nanoparticles bear a
negative surface charge, allowing for non-specific interactions with
the cancer cells and a rapid binding and uptake by cells. Of
importance, water for injection has been selected as media for the
Fig. 2. Hafnium oxide nanoparticles as radio-enhancer. NBTXR3 is designed for local admini
for direct application in the tumor cavity. NBTX-IV is designed for systemic use, intravenou
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Research Communications (2015), http://dx.doi.org/10.1016/j.bbrc.2015.0
NBTXR3 nanoparticles to ensure both, an adequate dispersion of
the nanoparticles in suspension (feasibility of the local adminis-
tration) and, an adequate intratumoral dispersion.
5.4. A tool which can be manufactured in a reliable manner, to
supply the market need

Selection of the manufacturing process is a key feature which
should be considered at an early stage of development. Soft
chemistry should be evaluated versus other manufacturing options
which may require energetic processes. Each reaction steps should
be in principle simple and easily tailored during the manufacturing
process to ensure the reliability of the product specifications
throughout all the production campaigns.
6. Clinical application

From an industry perspective, radio-enhancers as nanosized
metal-based objects with well-defined composition and structure,
could play a key role in oncology. They may unlock the potential of
radiotherapy by two important features: their capacity to deposit
high energy within tumors when the ionizing radiation source is
‘on’, and their chemically inert behavior in cellular and subcellular
systems, demonstrated by very good tolerance, thus decreasing
potential health hazards.

Important decision points support the development of these
new type of therapeutic agents originated from the nanotech-
nology. Also, regulatory and stakeholders are actively working by
bringing new guidelines and by participating to development
programs for the benefit of patients [22e24].
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