STS

2019 CTOS NBTXR3 in STS phase II/III trial

A subset of locally advanced soft tissue sarcoma (STS) patients achieve significant therapeutic benefit from preoperative radiation therapy (RT) as shown by Pisters JCO 1996 and Yang JCO 2018. However, the impact of RT on pathological response (pR) and R0 resection is limited, highlighting the need for novel multimodal therapies aimed at local control. NBTXR3 (hafnium oxide nanoparticles), injected intratumorally may represent such an option. Otherwise inert, NBTXR3 augments the effective RT dose deposited within tumor cells when activated by ionizing radiation to increase cancer cell death compared to RT alone. […]

Continue Reading...

2019 – ASTRO – NBTXR3 for the treatment of solid tumors

Local interventional treatments of cancers include interventional radiology and radiotherapy (RT). NBTXR3, hafnium oxide nanoparticles, is deeply associated to both. Given as a single local administration it increases energy dose deposit inside tumor cells only when activated by ionizing radiation. Various interventional treatments have been used to treat cancers such as liver, lung, bone. Because entirely new therapies such as NBTXR3 are being introduced, implementation of interventional approaches is continuously growing. […]

Continue Reading...

2019 – ESTRO – Randomized NBTXR3 trial in STS

Preoperative radiotherapy (RT) is an option for a subset of patients with locally advanced primary or relapsed tumors. Yet, its impact on efficacy in terms of pathological response is limited, highlighting the need for novel multimodal therapies aimed at local control with low toxicity. NBTXR3 is made of hafnium oxide nanoparticles which, injected intratumorally (IT) and activated by ionizing radiation, yield a tumor-localized high energy deposit and increase cell death compared to the same dose of RT alone. […]

Continue Reading...

2018 – ASTRO – NBTXR3 Anti-Tumor Immune Response

Soft tissue sarcoma (STS) is a rare type of cancer, which occurs in tissues connecting, supporting and/or surrounding other structures of the body, like muscle, fat, etc. More than 50 subtypes of STS exist, characterized by a strong propensity to local recurrence and metastatic spreading. Consistently, the immune microenvironment in sarcomas is highly variable. A new class of high electron density material, hafnium oxide, was designed at the nanoscale to efficiently absorb ionizing radiation from within the tumor cells and increase the dose deposition into the tumor. […]

Continue Reading...

2018 – ASTRO – NBTXR3 Exploratory Dosimetric Study

NBTXR3, injectable hafnium oxide nanoparticles, was designed to increase the energy deposit of the irradiation when activated by radiotherapy for the treatment of solid tumors. It is currently evaluated in a phase II/III clinical trial in soft tissue sarcoma (STS) [NCT02379845] of the extremity and trunk wall, to compare its efficacy when intratumorally injected and activated by radiotherapy versus radiotherapy alone. […]

Continue Reading...

2018 – ASTRO – NBTXR3 in solid tumors

To improve radiotherapy (RT) in terms of tumor response and to reduce irradiation of healthy tissues, innovative therapeutic approaches are needed. In response, NBTXR3, injectable hafnium oxide nanoparticles, was developed for the treatment of solid tumors. Once injected intratumorally, NBTXR3 can deposit high energy within tumors only when activated by an ionizing radiation source, like current standard RTs. […]

Continue Reading...

2018 – ESMO – Phase II/III NBTXR3 in STS

NBTXR3 is a first-in-class Hafnium-Oxide nanoparticle intratumorally (IT) injected. When activated by radiotherapy (RT), it allows for a higher energy deposit than RT alone, yielding an increased tumoral cell death. A phase I study in soft tissue sarcoma (STS) showed that a single NBTXR3 IT injection at 10% of the baseline tumor volume with preoperative RT was technically feasible with manageable toxicity and clinical activity was observed. […]

Continue Reading...

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer