Cisplatin

2017 – AACR Abstract – NBTXR3 combination with cisplatin in vivo and in vitro

Combination of NBTXR3 and cisplatin has been evaluated in vitro and in vivo. No specific toxicity was observed for the cells exposed only to NBTXR3. For the combined treatment, a marked and enhanced cell destruction when compared to the single agent. In vivo, NBTXR3 combined with low dose of cisplatin delayed tumor growth when compared to single agent CDDP in combination with RT. NBTXR3 is intended to be injected in the tumors. Spilling in the circulation may occur during product administration or, as expected, during tumor destruction, leading to steady trapping of NPs in the reticulo-endothelial system (liver and spleen). Clinically, it is unknown whether patients, previously treated with NPs, may show toxic signs when NPs are exposed (activation) to diagnosis imaging (computed tomography(CT)) of the liver.

Continue Reading...

2015 – Clinical Sciences and Drug Discovery Abstract – Use of metals as nano-sized radiation enhancers – Pottier et al.

Since the discovery of cisplatin about 40 years ago, the design of innovative metal-based anticancer drugs is a growing area of research. Metal elements offer specific characteristics due to their intrinsic properties and could be used in relation to their final state: a metal complex, a radionuclide, a metal-based nanoparticle product. Transition metal coordination complexes interact with cell molecular targets, affecting biochemical functions resulting in cancer cell destruction. Radionuclides are another way to use metals as anticancer therapy. The metal nucleus of the unstable radionuclide becomes stable by emitting energy. The biological effect in different tissues is obtained by the absorption of this energy from the radiation emitted by the radionuclide, the principal target generally agreed for ionizing radiations being DNA. A new area of clinical research is now emerging using the same experimental metal elements, but in a radically different manner: metals and metal oxides used as crystalline nanosized radiation enhancers particles. The use of metals as a high electron density material tailored at the nanoscale when exposed to radiotherapy is a unique approach that can allow entry to the cell and make feasible the absorption/deposition of a high-energy dose within the tumor cell (on/off activity). Therefore, high electron density metal or metal oxide nanoparticles may bring well known physical mode of action, that of radiotherapy, within malignant cells and achieve the paradigm of local cancer treatment.

Continue Reading...

2014 – Metals as Nanosized Radioenhancers – Pottier et al.

Since the discovery of cisplatin about 40 years ago, the design of innovative metal-based anticancer drugs is a growing area of research. Transition metal coordination complexes offer potential advantages over the more common organic-based drugs, including a wide range of coordination number and geometries, accessible redox states, tunability of the thermodynamics and kinetics of ligand substitution, as well as a wide structural diversity. Metal-based substances interact with cell molecular targets, affecting biochemical functions resulting in cancer cell destruction. Radionuclides are another way to use metals as anticancer therapy.

Continue Reading...

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer