Clinical Data NBTXR3

Abstracts in this section cover results of clinical trials with NBTXR3.

2020 – ESMO – NBTXR3 in HCC and Liver Metastases

NBTXR3, functionalized hafnium oxide nanoparticles, administered by intratumoral injection (ITI) and activated by radiotherapy (RT), such as stereotactic body RT (SBRT), increases energy deposit inside tumor cells and subsequently tumor cell death compared to RT alone, while sparing healthy tissues. This innovative approach, which does not engage liver and renal functions, might benefit patients (pts) with unresectable liver cancers. […]

Continue Reading...

2020 – ASCO – NBTXR3 With Anti PD1 Therapy

Despite the past decade of transformative advances in immuno-oncology, the response rate to checkpoint inhibitors (ICIs) remains low (~15%). There is significant interest in developing strategies to overcome resistance to these treatments, thus increasing response rate. Emerging evidence suggests that radiation therapy (RT) could potentially augment the antitumor response to ICIs through synergic effect. […]

Continue Reading...

2020 – MHNCS – NBTXR3 for locally advanced HNSCC

Elderly and/or frail patients (pts) with head and neck squamous cell carcinoma (HSNCC) remain a challenging to manage and neglected population regarding clinical trials and data generation to support treatment choices. Despite representing 20% of the HNSCC population no consensus exists on what is the optimal treatment for these pts with locally advanced (LA) disease, vulnerable to treatment-induced toxicities with the current standard of care. […]

Continue Reading...

2020 – ASCO-SITC – NBTXR3 with anti-PD-1 therapy

Most cancer patients present resistance to immune therapy; only approximately 15% of patients respond to immune checkpoint inhibitors (ICI). Strategies able to increase ICI response are thus of great interest. Radiotherapy (RT), by acting as an immunomodulator is a good candidate to increase the proportion of ICI responders. However, RT dose and ultimate efficacy are limited by potential toxicity to healthy tissues. NBTXR3, a first in class radioenhancer administered by intratumoral injection, has been designed at the nanoscale to increase RT energy dose deposition within the tumor. […]

Continue Reading...

2020 – ASCO GI – Treatment of liver cancers with NBTXR3

Treatment of unresectable liver cancer or liver metastases (mets) by stereotactic body radiotherapy is well tolerated but limited by the need to preserve liver function. Increasing energy deposition in the tumor while at the same time maintaining the dose in healthy tissue remains a major challenge in radiation oncology that could be achieved by NBTXR3 (hafnium oxide nanoparticles) when activated by radiotherapy (RT). NBTXR3 augments energy dose deposit within tumor cells, increasing tumor cell death compared to RT alone, while sparing healthy tissues. […]

Continue Reading...

2019 – A Phase I Study of NBTXR3 Activated by Radiotherapy for Patients with Advanced Cancers Treated With an Anti-PD-1 Therapy

The majority of cancer patients are resistant to immune therapy; only around 15% respond to immune checkpoint inhibitors (ICI). Thus, strategies able to increase ICI response are of great interest. Recent work suggests radiotherapy (RT) can act as an immunomodulator to increase the proportion of ICI responders and improve clinical outcomes. […]

Continue Reading...

2019 – NBTXR3 for the treatment of locally advanced HNSCC in frail and/or elderly patients: a phase I/II study

Elderly head and neck squamous cell carcinoma (HSNCC) patients (pts) ineligible for standard of care treatment require new therapeutic approaches. NBTXR3, hafnium oxide nanoparticles, may represent such an option. NBTXR3 is activated by radiotherapy, enhancing its effects, leading to physical destruction of cancer cells. […]

Continue Reading...

2019 – Phase I study of hafnium oxide nanoparticles activated by Intensity Modulated Radiation Therapy (IMRT) as a new therapeutic option for elderly or frail HNSCC patients

New therapeutic approaches are needed for elderly or frail head and neck squamous cell carcinoma (HNSCC) patients (pts) ineligible for standard of care. NBTXR3, hafnium oxide nanoparticles injected intratumorally, may represent an option. Otherwise inert, NBTXR3 augments the radiation therapy (RT) dose within tumor cells when activated by RT, increasing tumor cell death compared to RT alone. […]

Continue Reading...

2019 – Phase I/II trial of NBTXR3 activated by SBRT in patients with hepatocellular carcinoma or liver metastasis

Treatment of hepatocellular carcinoma (HCC) and liver metastasis (mets) is challenging due to presence of underlying disease, e.g. cirrhosis. Stereotactic body radiation therapy (SBRT) is a well-tolerated alternative for inoperable patients (pts), yet maximal dose to the tumor is limited by potential toxicity to surrounding healthy tissues. […]

Continue Reading...

2019 – Hafnium oxide nanoparticles activated by SBRT for the treatment of hepatocellular carcinoma and liver metastasis: a phase I/II trial

The medical community faces important challenges to treat liver cancer because of underlying disease. Reduction of healthy tissue irradiation while at the same time increasing energy dose deposit within tumor cells still constitutes a challenge in radiation oncology. NBTXR3, hafnium oxide nanoparticles, increase energy deposit inside tumor cells only when activated by ionizing radiation such as stereotactic body radiotherapy (SBRT) and thus increase tumor cell death compared to radiation alone. […]

Continue Reading...

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer