STS

2021 – Overcoming Resistance to Anti-PD-1 With Tumor Agnostic NBTXR3: From Bench to Bedside

Immune checkpoint inhibitors (ICI) can improve outcomes in patients who respond to treatment, however most patients exhibit resistance. Overcoming this resistance is the main challenge in immune-oncology and recent studies suggest radiotherapy (RT) may improve ICI response rates. NBTXR3, composed of functionalized hafnium oxide nanoparticles, is injected intratumorally and activated by RT. […]

Continue Reading...

2021 – Eur J Surg Oncol – STS Retrospective Study

Locally advanced soft tissue sarcoma (STS) management may include neoadjuvant or adjuvant treatment by radiotherapy (RT), chemotherapy (CT) or chemoradiotherapy (CRT) followed by wide surgical excision. While pathological complete response (pCR) to preoperative treatment is prognostic for survival in osteosarcomas, its significance for STS is unclear. We aimed to evaluate the prognostic significance of pCR to pre-operative treatment on 3-year disease-free survival (3y-DFS) in STS patients. […]

Continue Reading...

2019 CTOS NBTXR3 in STS phase II/III trial

A subset of locally advanced soft tissue sarcoma (STS) patients achieve significant therapeutic benefit from preoperative radiation therapy (RT) as shown by Pisters JCO 1996 and Yang JCO 2018. However, the impact of RT on pathological response (pR) and R0 resection is limited, highlighting the need for novel multimodal therapies aimed at local control. NBTXR3 (hafnium oxide nanoparticles), injected intratumorally may represent such an option. Otherwise inert, NBTXR3 augments the effective RT dose deposited within tumor cells when activated by ionizing radiation to increase cancer cell death compared to RT alone. […]

Continue Reading...

2019 – ASTRO – NBTXR3 for the treatment of solid tumors

Local interventional treatments of cancers include interventional radiology and radiotherapy (RT). NBTXR3, hafnium oxide nanoparticles, is deeply associated to both. Given as a single local administration it increases energy dose deposit inside tumor cells only when activated by ionizing radiation. Various interventional treatments have been used to treat cancers such as liver, lung, bone. Because entirely new therapies such as NBTXR3 are being introduced, implementation of interventional approaches is continuously growing. […]

Continue Reading...

2019 – ASCO – NBTXR3 induces antitumor immune response

Radiotherapy (RT) can prime an anti-tumor immune response. Unfortunately, this response rarely generates total tumor destruction and abscopal effect. When activated by RT, intratumorally (IT) administered hafnium oxide nanoparticles (NBTXR3) locally increase radiation dose deposit and tumor cell death compared to RT alone. We hypothesized that NBTXR3 + RT could enhance the anti-tumor immune response, both in mice and humans. […]

Continue Reading...

2019 – ESTRO – Randomized NBTXR3 trial in STS

Preoperative radiotherapy (RT) is an option for a subset of patients with locally advanced primary or relapsed tumors. Yet, its impact on efficacy in terms of pathological response is limited, highlighting the need for novel multimodal therapies aimed at local control with low toxicity. NBTXR3 is made of hafnium oxide nanoparticles which, injected intratumorally (IT) and activated by ionizing radiation, yield a tumor-localized high energy deposit and increase cell death compared to the same dose of RT alone. […]

Continue Reading...

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer