NO-RIGHTS

2020 – Phase I study of NBTXR3 activated by radiotherapy in patients with advanced cancers treated with an anti-PD-1 therapy

Despite the past decade of transformative advances in immuno-oncology, the response rate to checkpoint inhibitors (ICIs) remains low (~15%). There is significant interest in developing strategies to overcome resistance to these treatments, thus increasing response rate. Emerging evidence suggests that radiation therapy (RT) could potentially augment the antitumor response to ICIs through synergic effect. […]

Continuer la lecture…

2020 – Phase I trial of hafnium oxide nanoparticles activated by radiotherapy in cisplatin-ineligible locally advanced HNSCC patients

The standard of care non-surgical approach for locally advanced head and neck squamous cell carcinoma (LA HNSCC) patients (pts) is concurrent chemoradiation with high dose cisplatin or cetuximab in case of contra-indication. Older age is a contra-indication to cisplatin, and cetuximab might not improve survival in older pts. […]

Continuer la lecture…

2020 – Hafnium oxide nanoparticles (NBTXR3) activated by radiotherapy for the treatment of frail and/or elderly patients with locally advanced HNSCC: a phase I/II study

Elderly and/or frail patients (pts) with head and neck squamous cell carcinoma (HSNCC) remain a challenging to manage and neglected population regarding clinical trials and data generation to support treatment choices. Despite representing 20% of the HNSCC population no consensus exists on what is the optimal treatment for these pts with locally advanced (LA) disease, vulnerable to treatment-induced toxicities with the current standard of care. […]

Continuer la lecture…

2019 – Phase I study of hafnium oxide nanoparticles activated by Intensity Modulated Radiation Therapy (IMRT) as a new therapeutic option for elderly or frail HNSCC patients

New therapeutic approaches are needed for elderly or frail head and neck squamous cell carcinoma (HNSCC) patients (pts) ineligible for standard of care. NBTXR3, hafnium oxide nanoparticles injected intratumorally, may represent an option. Otherwise inert, NBTXR3 augments the radiation therapy (RT) dose within tumor cells when activated by RT, increasing tumor cell death compared to RT alone. […]

Continuer la lecture…

2019 – Hafnium oxide nanoparticles activated by SBRT for the treatment of hepatocellular carcinoma and liver metastasis: a phase I/II trial

The medical community faces important challenges to treat liver cancer because of underlying disease. Reduction of healthy tissue irradiation while at the same time increasing energy dose deposit within tumor cells still constitutes a challenge in radiation oncology. NBTXR3, hafnium oxide nanoparticles, increase energy deposit inside tumor cells only when activated by ionizing radiation such as stereotactic body radiotherapy (SBRT) and thus increase tumor cell death compared to radiation alone. […]

Continuer la lecture…

2021 – Eur J Cancer – NBTXR3 Phase I in HNSCC

This phase I study assessed the safety of first-in-class radioenhancer nanoparticles, NBTXR3, in elderly or frail patients with locally advanced head and neck squamous cell carcinoma (HNSCC), ineligible for chemoradiation. This is an observational, retrospective, international, study of adult patients with primary non-metastatic STS of the extremities and trunk wall, any grade, diagnosed between 2008 and 2012, treated with at least neoadjuvant treatment and surgical resection and observed for a minimum of 3 years after diagnosis. […]

Continuer la lecture…

2019 – Radiother Oncol – NBTXR3 improves cGAS-STING activation

The cGAS-STING pathway can be activated by radiation induced DNA damage and because of its important role in anti-cancer immunity activation, methods to increase its activation in cancer cells could provide significant therapeutic benefits for patients. We explored the impact of hafnium oxide nanoparticles (NBTXR3) activated by radiotherapy on cell death, DNA damage, and activation of the cGAS-STING pathway. […]

Continuer la lecture…

2019 – The Lancet Oncology – Act.In.Sarc

Pathological complete response to preoperative treatment in adults with soft-tissue sarcoma can be achieved in only a few patients receiving radiotherapy. This phase 2–3 trial evaluated the safety and efficacy of the hafnium oxide (HfO2) nanoparticle NBTXR3 activated by radiotherapy versus radiotherapy alone as a pre-operative treatment in patients with locally advanced soft-tissue sarcoma. Act.In.Sarc is a phase 2–3 randomised, multicentre, international trial. Adults (aged ≥18 years) with locally advanced soft-tissue sarcoma of the extremity or trunk wall, of any histological grade, and requiring preoperative radiotherapy were included. […]

Continuer la lecture…

2017 – Nano-sized cytochrome p450 3a4 inhibitors to block hepatic – Paolini et al.

Most drugs are metabolized by hepatic cytochrome P450 3A4 (CYP3A4), resulting in their reduced bioavailability. In this study, we present the design and evaluation of biocompatible nanocarriers trapping a natural CYP3A4-inhibiting compound. Our aim in using nanocarriers was to target the natural CYP3A4-inhibiting agent to hepatic CYP3A4 and leave drug-metabolizing enzymes in other organs undisturbed.

Continuer la lecture…

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer