Nanoparticle

2019 – ESMO – NBTXR3 activated by SBRT in liver cancers

Treatment of hepatocellular carcinoma (HCC) and liver metastasis (mets) is challenging due to presence of underlying disease, e.g. cirrhosis. Stereotactic body radiation therapy (SBRT) is a well-tolerated alternative for inoperable patients (pts), yet maximal dose to the tumor is limited by potential toxicity to surrounding healthy tissues. Otherwise inert, NBTXR3 (hafnium oxide nanoparticles) when acti- vated by ionizing radiation (RT) augments dose deposit within tumor cells, increasing tumor cell death compared to RT alone. […]

Continuer la lecture…

2018 – ASTRO – NBTXR3 Exploratory Dosimetric Study

NBTXR3, injectable hafnium oxide nanoparticles, was designed to increase the energy deposit of the irradiation when activated by radiotherapy for the treatment of solid tumors. It is currently evaluated in a phase II/III clinical trial in soft tissue sarcoma (STS) [NCT02379845] of the extremity and trunk wall, to compare its efficacy when intratumorally injected and activated by radiotherapy versus radiotherapy alone. […]

Continuer la lecture…

2018 – ASTRO – NBTXR3 in solid tumors

To improve radiotherapy (RT) in terms of tumor response and to reduce irradiation of healthy tissues, innovative therapeutic approaches are needed. In response, NBTXR3, injectable hafnium oxide nanoparticles, was developed for the treatment of solid tumors. Once injected intratumorally, NBTXR3 can deposit high energy within tumors only when activated by an ionizing radiation source, like current standard RTs. […]

Continuer la lecture…

2017 – Abstract – 13th Journées cancéropole GSO – HfO2 nanoparticles in solid tumors

The enclosed abstract was presented at the 13th Journées cancéropole Grand Sud-Ouest at Poitiers. The abstract Hafnium oxide nanoparticles as an emergent promising treatment for solid tumors describes how hafnium oxide nanoparticles were designed at the nanoscale in the form of crystalline 50nm-particles to efficiently absorb ionizing radiation and increase the radiation dose deposited – “hot spots” of energy deposit – from within the tumor cells for efficient cell killing. […]

Continuer la lecture…

2019 – The Lancet Oncology – Act.In.Sarc

Pathological complete response to preoperative treatment in adults with soft-tissue sarcoma can be achieved in only a few patients receiving radiotherapy. This phase 2–3 trial evaluated the safety and efficacy of the hafnium oxide (HfO2) nanoparticle NBTXR3 activated by radiotherapy versus radiotherapy alone as a pre-operative treatment in patients with locally advanced soft-tissue sarcoma. Act.In.Sarc is a phase 2–3 randomised, multicentre, international trial. Adults (aged ≥18 years) with locally advanced soft-tissue sarcoma of the extremity or trunk wall, of any histological grade, and requiring preoperative radiotherapy were included. […]

Continuer la lecture…

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer