SBRT

2020 – ESMO – NBTXR3 in HCC and Liver Metastases

NBTXR3, functionalized hafnium oxide nanoparticles, administered by intratumoral injection (ITI) and activated by radiotherapy (RT), such as stereotactic body RT (SBRT), increases energy deposit inside tumor cells and subsequently tumor cell death compared to RT alone, while sparing healthy tissues. This innovative approach, which does not engage liver and renal functions, might benefit patients (pts) with unresectable liver cancers. […]

Continuer la lecture…

2020 – ASTRO – NBTXR3 in Advanced Liver Cancers

Stereotactic body radiotherapy (SBRT) is a well-tolerated and valuable alternative for patients with unresectable hepatocellular carcinoma (HCC) or liver metastases (mets) who are not eligible for standard treatment such as surgery, local ablation or chemoembolization. Yet, the energy dose delivered to the tumor is limited due to potential toxicity to healthy tissues and the need to preserve liver function. […]

Continuer la lecture…

2020 – ASCO GI – Treatment of liver cancers with NBTXR3

Treatment of unresectable liver cancer or liver metastases (mets) by stereotactic body radiotherapy is well tolerated but limited by the need to preserve liver function. Increasing energy deposition in the tumor while at the same time maintaining the dose in healthy tissue remains a major challenge in radiation oncology that could be achieved by NBTXR3 (hafnium oxide nanoparticles) when activated by radiotherapy (RT). NBTXR3 augments energy dose deposit within tumor cells, increasing tumor cell death compared to RT alone, while sparing healthy tissues. […]

Continuer la lecture…

2019 – ESMO – NBTXR3 activated by SBRT in liver cancers

Treatment of hepatocellular carcinoma (HCC) and liver metastasis (mets) is challenging due to presence of underlying disease, e.g. cirrhosis. Stereotactic body radiation therapy (SBRT) is a well-tolerated alternative for inoperable patients (pts), yet maximal dose to the tumor is limited by potential toxicity to surrounding healthy tissues. Otherwise inert, NBTXR3 (hafnium oxide nanoparticles) when acti- vated by ionizing radiation (RT) augments dose deposit within tumor cells, increasing tumor cell death compared to RT alone. […]

Continuer la lecture…

2019 – ASTRO – NBTXR3 for the treatment of solid tumors

Local interventional treatments of cancers include interventional radiology and radiotherapy (RT). NBTXR3, hafnium oxide nanoparticles, is deeply associated to both. Given as a single local administration it increases energy dose deposit inside tumor cells only when activated by ionizing radiation. Various interventional treatments have been used to treat cancers such as liver, lung, bone. Because entirely new therapies such as NBTXR3 are being introduced, implementation of interventional approaches is continuously growing. […]

Continuer la lecture…

2019 – ASTRO – NBTXR3 for the treatment liver cancers

The medical community faces important challenges to treat liver cancer because of underlying disease. Reduction of healthy tissue irradiation while at the same time increasing energy dose deposit within tumor cells still constitutes a challenge in radiation oncology. NBTXR3, hafnium oxide nanoparticles, increase energy deposit inside tumor cells only when activated by ionizing radiation such as stereotactic body radiotherapy (SBRT) and thus increase tumor cell death compared to radiation alone. […]

Continuer la lecture…

2019 – ESMO WGI – NBTXR3 in unresectable liver cancers

The treatment of liver cancers is challenging in part due to the presence of underlying liver diseases. In patients unsuitable for surgery, interventional radiation oncology approaches, i.e. minimally invasive image guided therapeutic procedures, offer new treatment opportunities and can achieve good local control. NBTXR3, hafnium oxide nanoparticles, administered via intratumoral injection, increases energy deposit inside tumor cells only when activated by ionizing radiation such as stereotactic body radiotherapy (SBRT) and thus increase tumor cell death compared to radiation alone. […]

Continuer la lecture…

2019 – ASCO – NBTXR3 in Liver Cancers

Hafnium oxide nanoparticles, NBTXR3, increase the effect of radiotherapy (RT) by enhancing local energy dose deposit within tumor cells, resulting in increased cell death compared to the same dose of RT alone. NBTXR3 efficacy was demonstrated in a phase II/III study in soft tissue sarcoma (NCT02379845) and is currently evaluated in other solid tumors including liver cancers. The use of this radio enhancer is particularly relevant in liver cancer management, a difficult to treat heterogenous population, due to the presence of underlying liver dysfunction. […]

Continuer la lecture…

2019 – ESTRO – NBTXR3 activated by SBRT in liver cancers

Patients with hepatocellular carcinoma (HCC) and liver metastasis (mets) present with a wide range of underlying liver dysfunctions and concomitant malignancies. Stereotactic body radiation therapy (SBRT) is well-tolerated and a valuable alternative for patients who are not eligible for invasive procedures. Yet, like all radiation therapy (RT) techniques, the energy dose deposit to tumor cells is limited by the surrounding healthy tissues. […]

Continuer la lecture…

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer