Immune checkpoint inhibitors (ICIs) are being increasingly used to improve patient outcomes across different cancer types. However, the response rate to ICIs remains low (~15%), indicating the need for novel strategies to improve treatment outcome. Emerging evidence suggests that radiation therapy (RT) could potentially enhance the antitumor response and provide synergy with ICIs. RT dose and ultimate efficacy are however limited by toxicity related to exposure of healthy tissues. […]
Most cancer patients present resistance to immune therapy; only approximately 15% of patients respond to immune checkpoint inhibitors (ICI). Strategies able to increase ICI response are thus of great interest. Radiotherapy (RT), by acting as an immunomodulator is a good candidate to increase the proportion of ICI responders. However, RT dose and ultimate efficacy are limited by potential toxicity to healthy tissues. NBTXR3, a first in class radioenhancer administered by intratumoral injection, has been designed at the nanoscale to increase RT energy dose deposition within the tumor. […]
The majority of cancer patients are resistant to immune therapy; only around 15% respond to immune checkpoint inhibitors (ICI). Thus, strategies able to increase ICI response are of great interest. Recent work suggests radiotherapy (RT) can act as an immunomodulator to increase the proportion of ICI responders and improve clinical outcomes. However, RT dose and ultimate efficacy are limited by toxicity related to exposure of healthy tissues. […]
Elderly head and neck squamous cell carcinoma (HSNCC) patients (pts) ineligible for standard of care treatment require new therapeutic approaches. NBTXR3, hafnium oxide nanoparticles, may represent such an option. NBTXR3 is activated by radiotherapy, enhancing its effects, leading to physical destruction of cancer cells. A Phase I/II trial [NCT01946867] is underway to evaluate NBTXR3 in elderly (≥70 years) or frail pts with HNSCC of the oral cavity and oropharynx ineligible for cisplatin or intolerant to cetuximab. […]
First in class hafnium oxide nanoparticles (NBTXR3) activated by radiotherapy (RT) increase radiation dose deposit within cancer cells compared to RT alone. Given that RT can prime an anti-tumor immune response we hypothesized that this response could be enhanced by NBTXR3+RT in both animals and humans. […]
New therapeutic approaches are needed for elderly or frail head and neck squamous cell carcinoma (HNSCC) patients (pts) ineligible for standard of care. NBTXR3, hafnium oxide nanoparticles injected intratumorally, may represent an option. Otherwise inert, NBTXR3 augments the radiation therapy (RT) dose within tumor cells when activated by RT, increasing tumor cell death compared to RT alone. […]
Hafnium oxide nanoparticles (NBTXR3) activated by radiotherapy (RT) increase radiation dose deposit within cancer cells compared to RT alone. Currently 7 clinical trials are underway to evaluate NBTXR3+RT. To date, no dose limiting toxicities (DLTs) have been observed. Given that RT can prime an anti-tumor immune response we hypothesized that this response could be enhanced by NBTXR3+RT in both animals and humans. […]
Local interventional treatments of cancers include interventional radiology and radiotherapy (RT). NBTXR3, hafnium oxide nanoparticles, is deeply associated to both. Given as a single local administration it increases energy dose deposit inside tumor cells only when activated by ionizing radiation. Various interventional treatments have been used to treat cancers such as liver, lung, bone. Because entirely new therapies such as NBTXR3 are being introduced, implementation of interventional approaches is continuously growing. […]
Radiotherapy (RT) can prime an anti-tumor immune response. Unfortunately, this response rarely generates total tumor destruction and abscopal effect. When activated by RT, intratumorally (IT) administered hafnium oxide nanoparticles (NBTXR3) locally increase radiation dose deposit and tumor cell death compared to RT alone. We hypothesized that NBTXR3 + RT could enhance the anti-tumor immune response, both in mice and humans. […]
New therapeutic approaches are needed for elderly or frail head and neck squamous cell carcinoma (HNSCC) patients (pts) ineligible for standard of care treatment. NBTXR3, a crystalline solution of hafnium oxide nanoparticles may represent such an option. Injected intratumorally, NBTXR3 enters tumor cells and yields an increased cell-localized energy deposit upon exposure to radiotherapy (RT), leading to increased tumor cell death compared to the same dose of RT alone. […]