New therapeutic approaches are needed for elderly or frail head and neck squamous cell carcinoma (HNSCC) patients (pts) ineligible for standard of care. NBTXR3, hafnium oxide nanoparticles injected intratumorally, may represent an option. Otherwise inert, NBTXR3 augments the radiation therapy (RT) dose within tumor cells when activated by RT, increasing tumor cell death compared to RT alone. […]
For patients (pts) with hepatocellular carcinoma (HCC) or liver metastasis (liver mets), stereotactic body radiation therapy (SBRT) is a well-tolerated option. Yet, the risk of injury to normal tissues limits the ability to efficiently sterilize tumor cells. Thus, hafnium oxide nanoparticles, NBXTR3, were developed, which increase the interaction of radiotherapy energy dose deposition within tumor cells when activated by an ionizing energy source like SBRT. […]
Elderly patients (pts) with head and neck squamous cell carcinoma (HNSCC) represent 25% of the affected population. They are not always eligible to the same treatment of younger pts, thus require new therapies. NBTXR3, injectable hafnium oxide nanoparticles activated by radiotherapy (RT), was developed to increase the local deposit of energy within the tumor. […]
This phase I study aimed to determine the recommended dose (RD), safety profile, and feasibility of a procedure combining intratumoral injection of hafnium oxide nanoparticles (NBTXR3; a radioenhancer) and external beam radiotherapy (EBRT) for preoperative treatment of adults with locally advanced soft tissue sarcoma (STS). Patients had a preoperative indication of EBRT for STS of the extremity or trunk. Baseline tumor volume (TV) was calculated by MRI. NBTXR3 was injected percutaneously into tumors at 53.3 g/L. Dose escalation was based on four levels equivalent to 2.5%, 5%, 10%, and 20% of baseline TV. NBTXR3 was visualized in the tumor 24 hours postinjection, and EBRT was initiated (50 Gy over 5 weeks).