Radiation

2019 – NBTXR3 Activated By Radiotherapy Generates an Anti-Tumor Immune Response

Hafnium oxide nanoparticles (NBTXR3) activated by radiotherapy (RT) increase radiation dose deposit within cancer cells compared to RT alone. Currently 7 clinical trials are underway to evaluate NBTXR3+RT. To date, no dose limiting toxicities (DLTs) have been observed. Given that RT can prime an anti-tumor immune response we hypothesized that this response could be enhanced by NBTXR3+RT in both animals and humans. […]

Continuer la lecture…

2019 – ICHNO – Phase I/II NBTXR3 in HNSCC

Hafnium oxide nanoparticles, NBTXR3, were developed to augment tumor-localized high energy deposit once activated by ionizing radiation such as Intensity Modulated Radiation Therapy (IMRT) and thus to increase tumor cell death compared to the same dose of radiation. NBTXR3 is characterized by a single intratumoral (IT) administration and fits into standard radiotherapy schedule with no change in patient’s care pathway, treatment protocol or equipment. […]

Continuer la lecture…

2017 – Abstract SITC Conference Maryland – Clinical

Soft tissue sarcoma (STS) is a large and heterogeneous group of malignant mesenchymal neoplasms characterized by a strong tendency toward local recurrence and metastatic spreading. Consistently, the immune microenvironment in sarcomas is highly variable. A new class of material with high electron density, hafnium oxide, was designed at the nanoscale to efficiently absorb ionizing radiation […]

Continuer la lecture…

2017 – Abstract – 35th CFS – Hafnium Oxide Nanoparticles: An Emergent Promising Treatment for Solid Tumors

Hafnium oxide nanoparticles: an emergent promising treatment for solid tumors To improve tumor response, radiotherapy (RT) has been combined with chemical agents, radiosensitizers and monoclonal antibodies. However, the complexity of these associations in terms of pharmacology, local control, clinical outcome benefits or patient quality of life underlines the need for the development of new therapeutic approaches. […]

Continuer la lecture…

2019 – Radiother Oncol – NBTXR3 improves cGAS-STING activation

The cGAS-STING pathway can be activated by radiation induced DNA damage and because of its important role in anti-cancer immunity activation, methods to increase its activation in cancer cells could provide significant therapeutic benefits for patients. We explored the impact of hafnium oxide nanoparticles (NBTXR3) activated by radiotherapy on cell death, DNA damage, and activation of the cGAS-STING pathway. […]

Continuer la lecture…

2017 – Abstract SITC Conference Maryland – Non Clinical

Hafnium oxide, an electron-dense material, was designed at the nanoscale to increase the radiation dose deposited from within the cancer cells: “Hot spot” of energy deposit where the nanoparticles are when exposed to radiation therapy (RT). Preclinical studies have demonstrated increase of cancer cells killing in vitro and marked antitumor efficacy in vivo with presence of these nanoparticles […]

Continuer la lecture…

2017 – Abstract Conference Immunotherapy Radiotherapy Combinations NYC

Hafnium oxide, an electron-dense material, was designed at the nanoscale to increase the radiation dose deposited from within the cancer cells: “Hot spot” of energy deposit where the nanoparticles are when exposed to radiation therapy (RT). Preclinical studies have demonstrated increase of cancer cells killing in vitro and marked antitumor efficacy in vivo with presence of these nanoparticles […]

Continuer la lecture…

2017 – AACR Abstract – NBTXR3 combination with cisplatin in vivo and in vitro

Combination of NBTXR3 and cisplatin has been evaluated in vitro and in vivo. No specific toxicity was observed for the cells exposed only to NBTXR3. For the combined treatment, a marked and enhanced cell destruction when compared to the single agent. In vivo, NBTXR3 combined with low dose of cisplatin delayed tumor growth when compared to single agent CDDP in combination with RT. NBTXR3 is intended to be injected in the tumors. Spilling in the circulation may occur during product administration or, as expected, during tumor destruction, leading to steady trapping of NPs in the reticulo-endothelial system (liver and spleen). Clinically, it is unknown whether patients, previously treated with NPs, may show toxic signs when NPs are exposed (activation) to diagnosis imaging (computed tomography(CT)) of the liver.

Continuer la lecture…

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer