Radiotherapy

2017 – Abstract SITC Conference Maryland – Clinical

Soft tissue sarcoma (STS) is a large and heterogeneous group of malignant mesenchymal neoplasms characterized by a strong tendency toward local recurrence and metastatic spreading. Consistently, the immune microenvironment in sarcomas is highly variable. A new class of material with high electron density, hafnium oxide, was designed at the nanoscale to efficiently absorb ionizing radiation […]

Continuer la lecture…

2017 – Abstract – 35th CFS – Hafnium Oxide Nanoparticles: An Emergent Promising Treatment for Solid Tumors

Hafnium oxide nanoparticles: an emergent promising treatment for solid tumors To improve tumor response, radiotherapy (RT) has been combined with chemical agents, radiosensitizers and monoclonal antibodies. However, the complexity of these associations in terms of pharmacology, local control, clinical outcome benefits or patient quality of life underlines the need for the development of new therapeutic approaches. […]

Continuer la lecture…

2021 – Eur J Cancer – NBTXR3 Phase I in HNSCC

This phase I study assessed the safety of first-in-class radioenhancer nanoparticles, NBTXR3, in elderly or frail patients with locally advanced head and neck squamous cell carcinoma (HNSCC), ineligible for chemoradiation. This is an observational, retrospective, international, study of adult patients with primary non-metastatic STS of the extremities and trunk wall, any grade, diagnosed between 2008 and 2012, treated with at least neoadjuvant treatment and surgical resection and observed for a minimum of 3 years after diagnosis. […]

Continuer la lecture…

2019 – Radiother Oncol – NBTXR3 improves cGAS-STING activation

The cGAS-STING pathway can be activated by radiation induced DNA damage and because of its important role in anti-cancer immunity activation, methods to increase its activation in cancer cells could provide significant therapeutic benefits for patients. We explored the impact of hafnium oxide nanoparticles (NBTXR3) activated by radiotherapy on cell death, DNA damage, and activation of the cGAS-STING pathway. […]

Continuer la lecture…

2019 – The Lancet Oncology – Act.In.Sarc

Pathological complete response to preoperative treatment in adults with soft-tissue sarcoma can be achieved in only a few patients receiving radiotherapy. This phase 2–3 trial evaluated the safety and efficacy of the hafnium oxide (HfO2) nanoparticle NBTXR3 activated by radiotherapy versus radiotherapy alone as a pre-operative treatment in patients with locally advanced soft-tissue sarcoma. Act.In.Sarc is a phase 2–3 randomised, multicentre, international trial. Adults (aged ≥18 years) with locally advanced soft-tissue sarcoma of the extremity or trunk wall, of any histological grade, and requiring preoperative radiotherapy were included. […]

Continuer la lecture…

2018 – AACR – Activation of the cGAS-STING pathway by NBTXR3

Recent studies reported that radiotherapy could activate the cGAS-STING pathway, which plays a fundamental role in the immune response to cytoplasmic DNA, by activation of the transcriptional factor IRF3, leading to expression of interferon-beta. Moreover, cGAS-STING activation appears to be an important component for tumor resident Antigen-Presenting Cells activation, a crucial step for induction of CD8+ T cell response against tumor derived antigens. […]

Continuer la lecture…

2017 – Abstract SITC Conference Maryland – Non Clinical

Hafnium oxide, an electron-dense material, was designed at the nanoscale to increase the radiation dose deposited from within the cancer cells: “Hot spot” of energy deposit where the nanoparticles are when exposed to radiation therapy (RT). Preclinical studies have demonstrated increase of cancer cells killing in vitro and marked antitumor efficacy in vivo with presence of these nanoparticles […]

Continuer la lecture…

2017 – Abstract Conference Immunotherapy Radiotherapy Combinations NYC

Hafnium oxide, an electron-dense material, was designed at the nanoscale to increase the radiation dose deposited from within the cancer cells: “Hot spot” of energy deposit where the nanoparticles are when exposed to radiation therapy (RT). Preclinical studies have demonstrated increase of cancer cells killing in vitro and marked antitumor efficacy in vivo with presence of these nanoparticles […]

Continuer la lecture…

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer