Soft Tissue Sarcoma

2017 – Abstract Conference Immunotherapy Radiotherapy Combinations NYC

Hafnium oxide, an electron-dense material, was designed at the nanoscale to increase the radiation dose deposited from within the cancer cells: “Hot spot” of energy deposit where the nanoparticles are when exposed to radiation therapy (RT). Preclinical studies have demonstrated increase of cancer cells killing in vitro and marked antitumor efficacy in vivo with presence of these nanoparticles […]

Continuer la lecture…

2017 – Specific adaptive immune pattern induced by NBTXR3 exposed to radiation therapy in soft tissue sarcoma (STS) patients

NBTXR3 are functionalized hafnium oxide nanoparticles, undergoing seven clinical trials for enhancing radiation therapy (RT). The high electron density of the nanoparticles, when exposed to radiotherapy (NBTXR3 + RT), allow absorption/deposition of a high radiation dose within the cancer cells to physically kill the cells, and possibly improve outcome. Besides, NBTXR3 + RT has shown subsequent ability to enhance immunogenic cell death and immune response in preclinics. We hypothesized that NBTXR3 + RT could trigger an enhanced immune response when compared to RT in patients with STS.

Continuer la lecture…

2016 – Phase I data NBTXR3 Soft Tissue Sarcoma – Bonvalot et al.

This phase I study aimed to determine the recommended dose (RD), safety profile, and feasibility of a procedure combining intratumoral injection of hafnium oxide nanoparticles (NBTXR3; a radioenhancer) and external beam radiotherapy (EBRT) for preoperative treatment of adults with locally advanced soft tissue sarcoma (STS). Patients had a preoperative indication of EBRT for STS of the extremity or trunk. Baseline tumor volume (TV) was calculated by MRI. NBTXR3 was injected percutaneously into tumors at 53.3 g/L. Dose escalation was based on four levels equivalent to 2.5%, 5%, 10%, and 20% of baseline TV. NBTXR3 was visualized in the tumor 24 hours postinjection, and EBRT was initiated (50 Gy over 5 weeks).

Continuer la lecture…

2014 – Metals as Nanosized Radioenhancers – Pottier et al.

Since the discovery of cisplatin about 40 years ago, the design of innovative metal-based anticancer drugs is a growing area of research. Transition metal coordination complexes offer potential advantages over the more common organic-based drugs, including a wide range of coordination number and geometries, accessible redox states, tunability of the thermodynamics and kinetics of ligand substitution, as well as a wide structural diversity. Metal-based substances interact with cell molecular targets, affecting biochemical functions resulting in cancer cell destruction. Radionuclides are another way to use metals as anticancer therapy.

Continuer la lecture…

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer