Today, more than half of all cancer patients receive radiotherapy as part of their treatment. However, radiotherapy efficacy is often limited by healthy tissues toxicity and needs to be optimized. One relevant solution is to increase the radiation dose deposition from within the tumor cells. […]
We created and developed NBTXR3 nanoparticles with a crystalline hafnium oxide core which provide high electron density structure and inert behavior in biological media. NBTXR3 nanoparticles’ characteristics, size, charge and shape, allow for efficient interaction with biological entities, cell membrane binding and cellular uptake. The nanoparticles were shown to form clusters at the subcellular level in tumor models. Of most importance, we show NBTXR3 intratumor bioavailability with dispersion of nanoparticles in the three dimensions and persistence within the tumor structure, supporting the use of NBTXR3 as effective antitumor therapeutic agent.