Nanoparticles

2021 – NBTXR3 activated by radiotherapy in cisplatin-ineligible locally advanced HNSCC patients

Concurrent radiotherapy (RT) with high-dose cisplatin, or cetuximab in case of intolerance to cisplatin, are the non-surgical standard treatment for locally advanced head and neck squamous cell carcinoma (LA HNSCC). However, elderly patients, patients with poor performance status, comorbidities, and/or intolerance may not benefit from these treatments […]

Continuer la lecture…

2021 – Radiation enhancing NBTXR3 for the treatment of cisplatin-ineligible locally advanced HNSCC patients

The non-surgical standard of care (SOC) for the treatment of locally advanced head and neck squamous cell carcinoma(LA HNSCC) is concurrent chemoradiation with high dose cisplatin or cetuximab in case of contra-indication to cisplatin. However elderly patients, and those with poor performance status, comorbidities, and/or intolerance, may not benefit from these SOC treatments and represent a high unmet need. […]

Continuer la lecture…

2020 – Int J Nanomedicine NBTXR3 Induces Abscopal Effect

Despite tremendous results achieved by immune checkpoint inhibitors, most patients are not responders, mainly because of the lack of a pre-existing anti-tumor immune response. Thus, solutions to efficiently prime this immune response are currently under intensive investigations. Radiotherapy elicits cancer cell death, generating an antitumor-specific T cell response, turning tumors in personalized in situ vaccines, with potentially systemic effects (abscopal effect). Nonetheless, clinical evidence of sustained anti-tumor immunity as abscopal effect are rare. […]

Continuer la lecture…

2020 – ASTRO – NBTXR3 in Advanced Liver Cancers

Stereotactic body radiotherapy (SBRT) is a well-tolerated and valuable alternative for patients with unresectable hepatocellular carcinoma (HCC) or liver metastases (mets) who are not eligible for standard treatment such as surgery, local ablation or chemoembolization. Yet, the energy dose delivered to the tumor is limited due to potential toxicity to healthy tissues and the need to preserve liver function. […]

Continuer la lecture…

2020 – ASTRO – NBTXR3 in Combination with Anti-PD-1

Immune checkpoint inhibitors (ICIs) are being increasingly used to improve patient outcomes across different cancer types. However, the response rate to ICIs remains low (~15%), indicating the need for novel strategies to improve treatment outcome. Emerging evidence suggests that radiation therapy (RT) could potentially enhance the antitumor response and provide synergy with ICIs. RT dose and ultimate efficacy are however limited by toxicity related to exposure of healthy tissues. […]

Continuer la lecture…

2020 – ESMO – NBTXR3 in HCC and Liver Metastases

NBTXR3, functionalized hafnium oxide nanoparticles, administered by intratumoral injection (ITI) and activated by radiotherapy (RT), such as stereotactic body RT (SBRT), increases energy deposit inside tumor cells and subsequently tumor cell death compared to RT alone, while sparing healthy tissues. This innovative approach, which does not engage liver and renal functions, might benefit patients (pts) with unresectable liver cancers. […]

Continuer la lecture…

2020 – ASCO – NBTXR3 With Anti PD1 Therapy

Despite the past decade of transformative advances in immuno-oncology, the response rate to checkpoint inhibitors (ICIs) remains low (~15%). There is significant interest in developing strategies to overcome resistance to these treatments, thus increasing response rate. Emerging evidence suggests that radiation therapy (RT) could potentially augment the antitumor response to ICIs through synergic effect. […]

Continuer la lecture…

2019 – ASTRO – NBTXR3 for the treatment liver cancers

The medical community faces important challenges to treat liver cancer because of underlying disease. Reduction of healthy tissue irradiation while at the same time increasing energy dose deposit within tumor cells still constitutes a challenge in radiation oncology. NBTXR3, hafnium oxide nanoparticles, increase energy deposit inside tumor cells only when activated by ionizing radiation such as stereotactic body radiotherapy (SBRT) and thus increase tumor cell death compared to radiation alone. […]

Continuer la lecture…

By continuing to use the site, you agree to the use of cookies.En poursuivant votre navigation sur ce site, vous acceptez l’utilisation de cookies. More information.En savoir plus.

The cookie settings on this website are set to “allow cookies” to give you the possibility to switch between languages in a way that this will not interfere with page navigation. If you continue to use this website without changing your cookie settings or you click “Accept” below then you are consenting to this.Par défaut, les paramètres de ce site autorisent les cookies pour vous permettre notamment de naviguer entre les différentes langues disponibles. Nous utilisons des cookies pour vous proposer un site internet facile d'utilisation, sécurisé et fonctionnel. Si vous les autorisez également, cliquez sur « Accepter » ou poursuivez simplement votre navigation.

CloseFermer